Curve name | $X_{102g}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{102}$ | ||||||||||||
Curves that $X_{102g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{102g}$ | |||||||||||||
Curves that minimally cover $X_{102g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{10} + 54t^{9} + 405t^{8} - 1728t^{7} + 2160t^{6} + 864t^{5} - 6048t^{4} + 8640t^{3} - 6480t^{2} + 2592t - 432\] \[B(t) = -54t^{15} + 162t^{14} + 1134t^{13} - 6426t^{12} + 6480t^{11} + 32400t^{10} - 133056t^{9} + 256608t^{8} - 351216t^{7} + 426384t^{6} - 480816t^{5} + 441936t^{4} - 290304t^{3} + 124416t^{2} - 31104t + 3456\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 351x - 2430$, with conductor $63$ | ||||||||||||
Generic density of odd order reductions | $17/168$ |