Curve name | $X_{102i}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{102}$ | |||||||||
Curves that $X_{102i}$ minimally covers | ||||||||||
Curves that minimally cover $X_{102i}$ | ||||||||||
Curves that minimally cover $X_{102i}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} - 864t^{11} + 864t^{10} + 13824t^{9} - 15552t^{8} - 76032t^{7} + 183168t^{6} - 76032t^{5} - 250560t^{4} + 483840t^{3} - 400896t^{2} + 165888t - 27648\] \[B(t) = 432t^{18} + 5184t^{17} + 5184t^{16} - 117504t^{15} - 145152t^{14} + 1451520t^{13} + 145152t^{12} - 10077696t^{11} + 13488768t^{10} + 17266176t^{9} - 68719104t^{8} + 102021120t^{7} - 129862656t^{6} + 174182400t^{5} - 189444096t^{4} + 138018816t^{3} - 62373888t^{2} + 15925248t - 1769472\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 1195616x + 502673184$, with conductor $5880$ | |||||||||
Generic density of odd order reductions | $635/5376$ |