Curve name | $X_{102n}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{102}$ | |||||||||
Curves that $X_{102n}$ minimally covers | ||||||||||
Curves that minimally cover $X_{102n}$ | ||||||||||
Curves that minimally cover $X_{102n}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} + 1728t^{6} - 3456t^{5} + 6912t^{3} - 10368t^{2} + 6912t - 1728\] \[B(t) = -432t^{12} + 10368t^{10} - 20736t^{9} - 41472t^{8} + 207360t^{7} - 338688t^{6} + 373248t^{5} - 466560t^{4} + 552960t^{3} - 414720t^{2} + 165888t - 27648\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 2497x - 48577$, with conductor $1344$ | |||||||||
Generic density of odd order reductions | $193/1792$ |