The modular curve $X_{106}$

Curve name $X_{106}$
Index $24$
Level $16$
Genus $0$
Does the subgroup contain $-I$? Yes
Generating matrices $ \left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{11}$
$8$ $12$ $X_{39}$
Meaning/Special name
Chosen covering $X_{39}$
Curves that $X_{106}$ minimally covers $X_{39}$
Curves that minimally cover $X_{106}$ $X_{221}$, $X_{237}$, $X_{286}$, $X_{304}$, $X_{359}$, $X_{360}$
Curves that minimally cover $X_{106}$ and have infinitely many rational points. $X_{221}$, $X_{237}$, $X_{304}$
Model \[\mathbb{P}^{1}, \mathbb{Q}(X_{106}) = \mathbb{Q}(f_{106}), f_{39} = f_{106}^{2} + 4\]
Info about rational points None
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 405x + 4104$, with conductor $2016$
Generic density of odd order reductions $85091/344064$

Back to the 2-adic image homepage.