Curve name | $X_{11}$ | ||||||
Index | $6$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 1 \\ 2 & 1 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | Elliptic curves with discriminant $\Delta$ whose $2$-isogenous curve has discriminant in the square class of $-\Delta$ | ||||||
Chosen covering | $X_{6}$ | ||||||
Curves that $X_{11}$ minimally covers | $X_{6}$ | ||||||
Curves that minimally cover $X_{11}$ | $X_{23}$, $X_{24}$, $X_{26}$, $X_{27}$, $X_{28}$, $X_{29}$, $X_{35}$, $X_{39}$, $X_{41}$, $X_{43}$, $X_{45}$, $X_{47}$, $X_{49}$, $X_{50}$, $X_{53}$, $X_{54}$ | ||||||
Curves that minimally cover $X_{11}$ and have infinitely many rational points. | $X_{23}$, $X_{24}$, $X_{26}$, $X_{27}$, $X_{28}$, $X_{29}$, $X_{35}$, $X_{39}$, $X_{41}$, $X_{43}$, $X_{45}$, $X_{47}$, $X_{49}$, $X_{50}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{11}) = \mathbb{Q}(f_{11}), f_{6} = f_{11}^{2} - 16\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 72x + 485$, with conductor $2772$ | ||||||
Generic density of odd order reductions | $83/336$ |