## The modular curve $X_{115f}$

Curve name $X_{115f}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $\left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 12 & 7 \end{matrix}\right]$
Images in lower levels
 Level Index of image Corresponding curve $2$ $3$ $X_{6}$ $4$ $6$ $X_{13}$ $8$ $24$ $X_{32j}$
Meaning/Special name
Chosen covering $X_{115}$
Curves that $X_{115f}$ minimally covers
Curves that minimally cover $X_{115f}$
Curves that minimally cover $X_{115f}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by $y^2 = x^3 + A(t)x + B(t), \text{ where}$ $A(t) = -108t^{8} - 432t^{4} - 108$ $B(t) = -432t^{12} + 3240t^{8} + 2592t^{4} + 432$
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 428x + 3408$, with conductor $320$
Generic density of odd order reductions $419/2688$