Curve name | $X_{118d}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 16 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{118}$ | |||||||||||||||
Curves that $X_{118d}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{118d}$ | ||||||||||||||||
Curves that minimally cover $X_{118d}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{14} + 216t^{12} - 3456t^{8} + 6480t^{6} + 3456t^{4} - 6912t^{2}\] \[B(t) = 54t^{21} - 648t^{19} + 1296t^{17} + 12096t^{15} - 55728t^{13} + 5184t^{11} + 314496t^{9} - 456192t^{7} + 165888t^{5} - 221184t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 24755x - 1492878$, with conductor $2925$ | |||||||||||||||
Generic density of odd order reductions | $307/2688$ |