Curve name | $X_{118h}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{118}$ | |||||||||||||||
Curves that $X_{118h}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{118h}$ | ||||||||||||||||
Curves that minimally cover $X_{118h}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{14} - 864t^{12} + 13824t^{8} + 25920t^{6} - 13824t^{4} - 27648t^{2}\] \[B(t) = 432t^{21} + 5184t^{19} + 10368t^{17} - 96768t^{15} - 445824t^{13} - 41472t^{11} + 2515968t^{9} + 3649536t^{7} + 1327104t^{5} + 1769472t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 10709868x - 13489966672$, with conductor $486720$ | |||||||||||||||
Generic density of odd order reductions | $307/2688$ |