Curve name | $X_{118p}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{118}$ | |||||||||||||||
Curves that $X_{118p}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{118p}$ | ||||||||||||||||
Curves that minimally cover $X_{118p}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{18} + 5184t^{14} - 84672t^{10} + 497664t^{6} - 442368t^{2}\] \[B(t) = 432t^{27} - 31104t^{23} + 881280t^{19} - 12192768t^{15} + 80953344t^{11} - 191102976t^{7} - 113246208t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 301539042x + 2195354163991$, with conductor $38025$ | |||||||||||||||
Generic density of odd order reductions | $307/2688$ |