Curve name | X118r | |||||||||||||||
Index | 48 | |||||||||||||||
Level | 32 | |||||||||||||||
Genus | 0 | |||||||||||||||
Does the subgroup contain −I? | No | |||||||||||||||
Generating matrices | [7707],[1007],[5001],[70167],[3003] | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | X118 | |||||||||||||||
Curves that X118r minimally covers | ||||||||||||||||
Curves that minimally cover X118r | ||||||||||||||||
Curves that minimally cover X118r and have infinitely many rational points. | ||||||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−27t18+1296t14−21168t10+124416t6−110592t2 B(t)=54t27−3888t23+110160t19−1524096t15+10119168t11−23887872t7−14155776t3 | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy=x3−x2−4183542x−3292403009, with conductor 38025 | |||||||||||||||
Generic density of odd order reductions | 307/2688 |