| Curve name |
$X_{118s}$ |
| Index |
$48$ |
| Level |
$16$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{118}$ |
| Curves that $X_{118s}$ minimally covers |
|
| Curves that minimally cover $X_{118s}$ |
|
| Curves that minimally cover $X_{118s}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{12} + 864t^{10} - 13824t^{6} + 25920t^{4} + 13824t^{2} - 27648\]
\[B(t) = 432t^{18} - 5184t^{16} + 10368t^{14} + 96768t^{12} - 445824t^{10} +
41472t^{8} + 2515968t^{6} - 3649536t^{4} + 1327104t^{2} - 1769472\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 + xy = x^3 - x^2 - 1170000x + 487402461$, with conductor $585$ |
| Generic density of odd order reductions |
$25/224$ |