Curve name | X119c | ||||||||||||
Index | 48 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [1181],[7001],[7083],[5085] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X119 | ||||||||||||
Curves that X119c minimally covers | |||||||||||||
Curves that minimally cover X119c | |||||||||||||
Curves that minimally cover X119c and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−108t8−1728t6−8640t4−13824t2−1728 B(t)=432t12+10368t10+93312t8+387072t6+715392t4+414720t2−27648 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2=x3+x2−12801x+553215, with conductor 960 | ||||||||||||
Generic density of odd order reductions | 635/5376 |