Curve name | $X_{119g}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{119}$ | ||||||||||||
Curves that $X_{119g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{119g}$ | |||||||||||||
Curves that minimally cover $X_{119g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} - 3456t^{10} - 43200t^{8} - 262656t^{6} - 775872t^{4} - 912384t^{2} - 110592\] \[B(t) = 432t^{18} + 20736t^{16} + 425088t^{14} + 4838400t^{12} + 33229440t^{10} + 139677696t^{8} + 345461760t^{6} + 445243392t^{4} + 207028224t^{2} - 14155776\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 28803x + 1881502$, with conductor $360$ | ||||||||||||
Generic density of odd order reductions | $691/5376$ |