| Curve name | 
$X_{119p}$ | 
| Index | 
$48$ | 
| Level | 
$16$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{119}$ | 
| Curves that $X_{119p}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{119p}$ | 
 | 
| Curves that minimally cover $X_{119p}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -108t^{16} - 4320t^{14} - 72576t^{12} - 663552t^{10} - 3568320t^{8} - 
11321856t^{6} - 19823616t^{4} - 15482880t^{2} - 1769472\]
\[B(t) = 432t^{24} + 25920t^{22} + 694656t^{20} + 10962432t^{18} + 
113021568t^{16} + 797879808t^{14} + 3926264832t^{12} + 13421998080t^{10} + 
31071485952t^{8} + 45951418368t^{6} + 38263062528t^{4} + 12570329088t^{2} - 
905969664\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 - 720075x + 235187750$, with conductor $1800$ | 
| Generic density of odd order reductions | 
$691/5376$ |