Curve name | $X_{119p}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{119}$ | ||||||||||||
Curves that $X_{119p}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{119p}$ | |||||||||||||
Curves that minimally cover $X_{119p}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 4320t^{14} - 72576t^{12} - 663552t^{10} - 3568320t^{8} - 11321856t^{6} - 19823616t^{4} - 15482880t^{2} - 1769472\] \[B(t) = 432t^{24} + 25920t^{22} + 694656t^{20} + 10962432t^{18} + 113021568t^{16} + 797879808t^{14} + 3926264832t^{12} + 13421998080t^{10} + 31071485952t^{8} + 45951418368t^{6} + 38263062528t^{4} + 12570329088t^{2} - 905969664\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 720075x + 235187750$, with conductor $1800$ | ||||||||||||
Generic density of odd order reductions | $691/5376$ |