The modular curve $X_{120h}$

Curve name $X_{120h}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13f}$
$8$ $24$ $X_{36f}$
Meaning/Special name
Chosen covering $X_{120}$
Curves that $X_{120h}$ minimally covers
Curves that minimally cover $X_{120h}$
Curves that minimally cover $X_{120h}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} + 864t^{10} - 10800t^{8} + 65664t^{6} - 193968t^{4} + 228096t^{2} - 27648\] \[B(t) = -54t^{18} + 2592t^{16} - 53136t^{14} + 604800t^{12} - 4153680t^{10} + 17459712t^{8} - 43182720t^{6} + 55655424t^{4} - 25878528t^{2} - 1769472\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 + x^2 + 768x - 1548$, with conductor $2352$
Generic density of odd order reductions $17/168$

Back to the 2-adic image homepage.