| Curve name | $X_{120h}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{120}$ | 
| Curves that $X_{120h}$ minimally covers |  | 
| Curves that minimally cover $X_{120h}$ |  | 
| Curves that minimally cover $X_{120h}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{12} + 864t^{10} - 10800t^{8} + 65664t^{6} - 193968t^{4} + 
228096t^{2} - 27648\]
\[B(t) = -54t^{18} + 2592t^{16} - 53136t^{14} + 604800t^{12} - 4153680t^{10} + 
17459712t^{8} - 43182720t^{6} + 55655424t^{4} - 25878528t^{2} - 1769472\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 768x - 1548$, with conductor $2352$ | 
| Generic density of odd order reductions | $17/168$ |