Curve name | $X_{120}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{36}$ | ||||||||||||
Curves that $X_{120}$ minimally covers | $X_{36}$ | ||||||||||||
Curves that minimally cover $X_{120}$ | $X_{207}$, $X_{215}$, $X_{217}$, $X_{227}$, $X_{229}$, $X_{234}$, $X_{235}$, $X_{236}$, $X_{336}$, $X_{340}$, $X_{341}$, $X_{345}$, $X_{120a}$, $X_{120b}$, $X_{120c}$, $X_{120d}$, $X_{120e}$, $X_{120f}$, $X_{120g}$, $X_{120h}$, $X_{120i}$, $X_{120j}$, $X_{120k}$, $X_{120l}$, $X_{120m}$, $X_{120n}$, $X_{120o}$, $X_{120p}$ | ||||||||||||
Curves that minimally cover $X_{120}$ and have infinitely many rational points. | $X_{207}$, $X_{215}$, $X_{217}$, $X_{227}$, $X_{229}$, $X_{234}$, $X_{235}$, $X_{236}$, $X_{120a}$, $X_{120b}$, $X_{120c}$, $X_{120d}$, $X_{120e}$, $X_{120f}$, $X_{120g}$, $X_{120h}$, $X_{120i}$, $X_{120j}$, $X_{120k}$, $X_{120l}$, $X_{120m}$, $X_{120n}$, $X_{120o}$, $X_{120p}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{120}) = \mathbb{Q}(f_{120}), f_{36} = f_{120}^{2} - 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 + 25x$, with conductor $525$ | ||||||||||||
Generic density of odd order reductions | $19/168$ |