Curve name | $X_{121c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{121}$ | ||||||||||||
Curves that $X_{121c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{121c}$ | |||||||||||||
Curves that minimally cover $X_{121c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{8} - 216t^{6} - 540t^{4} - 432t^{2} - 27\] \[B(t) = -54t^{12} - 648t^{10} - 2916t^{8} - 6048t^{6} - 5589t^{4} - 1620t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 15x - 18$, with conductor $240$ | ||||||||||||
Generic density of odd order reductions | $9/112$ |