Curve name | $X_{121}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{36}$ | ||||||||||||
Curves that $X_{121}$ minimally covers | $X_{36}$ | ||||||||||||
Curves that minimally cover $X_{121}$ | $X_{208}$, $X_{223}$, $X_{225}$, $X_{234}$, $X_{339}$, $X_{342}$, $X_{121a}$, $X_{121b}$, $X_{121c}$, $X_{121d}$, $X_{121e}$, $X_{121f}$, $X_{121g}$, $X_{121h}$, $X_{121i}$, $X_{121j}$, $X_{121k}$, $X_{121l}$, $X_{121m}$, $X_{121n}$, $X_{121o}$, $X_{121p}$ | ||||||||||||
Curves that minimally cover $X_{121}$ and have infinitely many rational points. | $X_{208}$, $X_{223}$, $X_{225}$, $X_{234}$, $X_{121a}$, $X_{121b}$, $X_{121c}$, $X_{121d}$, $X_{121e}$, $X_{121f}$, $X_{121g}$, $X_{121h}$, $X_{121i}$, $X_{121j}$, $X_{121k}$, $X_{121l}$, $X_{121m}$, $X_{121n}$, $X_{121o}$, $X_{121p}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{121}) = \mathbb{Q}(f_{121}), f_{36} = -2f_{121}^{2} - 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 181566x + 29819155$, with conductor $1989$ | ||||||||||||
Generic density of odd order reductions | $83/672$ |