Curve name | $X_{122e}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{122}$ | ||||||||||||
Curves that $X_{122e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{122e}$ | |||||||||||||
Curves that minimally cover $X_{122e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{12} + 27648t^{10} - 43200t^{8} + 32832t^{6} - 12123t^{4} + 1782t^{2} - 27\] \[B(t) = -221184t^{18} + 1327104t^{16} - 3400704t^{14} + 4838400t^{12} - 4153680t^{10} + 2182464t^{8} - 674730t^{6} + 108702t^{4} - 6318t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 112899x - 14601022$, with conductor $1008$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |