Curve name | $X_{122}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{36}$ | ||||||||||||
Curves that $X_{122}$ minimally covers | $X_{36}$ | ||||||||||||
Curves that minimally cover $X_{122}$ | $X_{207}$, $X_{208}$, $X_{211}$, $X_{212}$, $X_{217}$, $X_{228}$, $X_{230}$, $X_{233}$, $X_{335}$, $X_{337}$, $X_{346}$, $X_{347}$, $X_{122a}$, $X_{122b}$, $X_{122c}$, $X_{122d}$, $X_{122e}$, $X_{122f}$, $X_{122g}$, $X_{122h}$, $X_{122i}$, $X_{122j}$, $X_{122k}$, $X_{122l}$, $X_{122m}$, $X_{122n}$, $X_{122o}$, $X_{122p}$ | ||||||||||||
Curves that minimally cover $X_{122}$ and have infinitely many rational points. | $X_{207}$, $X_{208}$, $X_{211}$, $X_{212}$, $X_{217}$, $X_{228}$, $X_{230}$, $X_{233}$, $X_{122a}$, $X_{122b}$, $X_{122c}$, $X_{122d}$, $X_{122e}$, $X_{122f}$, $X_{122g}$, $X_{122h}$, $X_{122i}$, $X_{122j}$, $X_{122k}$, $X_{122l}$, $X_{122m}$, $X_{122n}$, $X_{122o}$, $X_{122p}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{122}) = \mathbb{Q}(f_{122}), f_{36} = 8f_{122}^{2} - 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 19600x - 1064375$, with conductor $525$ | ||||||||||||
Generic density of odd order reductions | $19/168$ |