Curve name | $X_{13h}$ | ||||||
Index | $12$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | No | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | $X_1(4)$ | ||||||
Chosen covering | $X_{13}$ | ||||||
Curves that $X_{13h}$ minimally covers | |||||||
Curves that minimally cover $X_{13h}$ | |||||||
Curves that minimally cover $X_{13h}$ and have infinitely many rational points. | |||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{4} + 432t^{3} - 432t^{2} - 20736t + 82944\] \[B(t) = 54t^{6} - 1296t^{5} + 6480t^{4} + 65664t^{3} - 746496t^{2} + 1990656t\] | ||||||
Info about rational points | |||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 146x + 621$, with conductor $33$ | ||||||
Generic density of odd order reductions | $5/42$ |