| Curve name | 
$X_{149}$ | 
| Index | 
$24$ | 
| Level | 
$16$ | 
| Genus | 
$1$ | 
| Does the subgroup contain $-I$? | 
Yes | 
| Generating matrices | 
$
\left[ \begin{matrix} 1 & 3 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 3 \\ 10 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 13 \end{matrix}\right],
\left[ \begin{matrix} 1 & 2 \\ 4 & 13 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{45}$ | 
| Curves that $X_{149}$ minimally covers  | 
$X_{45}$ | 
| Curves that minimally cover $X_{149}$ | 
$X_{311}$, $X_{322}$, $X_{325}$, $X_{351}$, $X_{363}$, $X_{367}$, $X_{378}$, $X_{385}$, $X_{391}$, $X_{392}$ | 
| Curves that minimally cover $X_{149}$ and have infinitely many rational 
points. | 
 | 
| Model | 
\[y^2 = x^3 - x^2 - 13x + 21\] | 
| Info about rational points | 
| Rational point | Image on the $j$-line | 
 
| $(0 : 1 : 0)$ | 
\[ \infty \]
 | 
 
| $(3 : 0 : 1)$ | 
\[1728 \,\,(\text{CM by }-4)\]
 | 
 
 
 | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
None | 
| Generic density of odd order reductions | 
N/A |