Curve name |
$X_{159}$ |
Index |
$24$ |
Level |
$16$ |
Genus |
$1$ |
Does the subgroup contain $-I$? |
Yes |
Generating matrices |
$
\left[ \begin{matrix} 7 & 7 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ |
Images in lower levels |
|
Meaning/Special name |
|
Chosen covering |
$X_{36}$ |
Curves that $X_{159}$ minimally covers |
$X_{36}$ |
Curves that minimally cover $X_{159}$ |
$X_{306}$, $X_{315}$, $X_{329}$, $X_{331}$, $X_{341}$, $X_{342}$, $X_{344}$, $X_{345}$, $X_{346}$, $X_{347}$ |
Curves that minimally cover $X_{159}$ and have infinitely many rational
points. |
|
Model |
\[y^2 = x^3 - 4x\] |
Info about rational points |
Rational point | Image on the $j$-line |
$(0 : 1 : 0)$ |
\[ \infty \]
|
$(-2 : 0 : 1)$ |
\[ \infty \]
|
$(0 : 0 : 1)$ |
\[ \infty \]
|
$(2 : 0 : 1)$ |
\[ \infty \]
|
|
Comments on finding rational points |
None |
Elliptic curve whose $2$-adic image is the subgroup |
None |
Generic density of odd order reductions |
N/A |