| Curve name |
$X_{160}$ |
| Index |
$24$ |
| Level |
$16$ |
| Genus |
$1$ |
| Does the subgroup contain $-I$? |
Yes |
| Generating matrices |
$
\left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right],
\left[ \begin{matrix} 11 & 11 \\ 2 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 10 \\ 2 & 3 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{39}$ |
| Curves that $X_{160}$ minimally covers |
$X_{39}$ |
| Curves that minimally cover $X_{160}$ |
$X_{282}$, $X_{286}$, $X_{303}$, $X_{307}$, $X_{362}$, $X_{366}$, $X_{370}$, $X_{381}$, $X_{388}$, $X_{398}$ |
| Curves that minimally cover $X_{160}$ and have infinitely many rational
points. |
|
| Model |
\[y^2 = x^3 - x^2 - 13x + 21\] |
| Info about rational points |
| Rational point | Image on the $j$-line |
| $(0 : 1 : 0)$ |
\[ \infty \]
|
| $(3 : 0 : 1)$ |
\[1728 \,\,(\text{CM by }-4)\]
|
|
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
None |
| Generic density of odd order reductions |
N/A |