| Curve name | $X_{185f}$ | 
| Index | $96$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{185}$ | 
| Curves that $X_{185f}$ minimally covers |  | 
| Curves that minimally cover $X_{185f}$ |  | 
| Curves that minimally cover $X_{185f}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -442368t^{24} - 6856704t^{20} - 7050240t^{16} - 2681856t^{12} - 
440640t^{8} - 26784t^{4} - 108\]
\[B(t) = 113246208t^{36} - 3482320896t^{32} - 10022289408t^{28} - 
9314500608t^{24} - 4238770176t^{20} - 1059692544t^{16} - 145539072t^{12} - 
9787392t^{8} - 212544t^{4} + 432\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 216033x - 38556063$, with conductor $4800$ | 
| Generic density of odd order reductions | $109/896$ |