The modular curve $X_{188c}$

Curve name $X_{188c}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $24$ $X_{25n}$
Meaning/Special name
Chosen covering $X_{188}$
Curves that $X_{188c}$ minimally covers
Curves that minimally cover $X_{188c}$
Curves that minimally cover $X_{188c}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 432t^{14} - 1296t^{12} - 1728t^{10} - 99360t^{8} - 6912t^{6} - 20736t^{4} + 27648t^{2} - 6912\] \[B(t) = 54t^{24} - 1296t^{22} + 9072t^{20} - 12096t^{18} - 484704t^{16} + 3608064t^{14} + 3580416t^{12} + 14432256t^{10} - 7755264t^{8} - 774144t^{6} + 2322432t^{4} - 1327104t^{2} + 221184\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 + xy + y = x^3 + x^2 - 84x + 261$, with conductor $42$
Generic density of odd order reductions $53/896$

Back to the 2-adic image homepage.