Curve name | $X_{188c}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{188}$ | |||||||||
Curves that $X_{188c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{188c}$ | ||||||||||
Curves that minimally cover $X_{188c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 432t^{14} - 1296t^{12} - 1728t^{10} - 99360t^{8} - 6912t^{6} - 20736t^{4} + 27648t^{2} - 6912\] \[B(t) = 54t^{24} - 1296t^{22} + 9072t^{20} - 12096t^{18} - 484704t^{16} + 3608064t^{14} + 3580416t^{12} + 14432256t^{10} - 7755264t^{8} - 774144t^{6} + 2322432t^{4} - 1327104t^{2} + 221184\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 84x + 261$, with conductor $42$ | |||||||||
Generic density of odd order reductions | $53/896$ |