Curve name | $X_{188}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{98}$ | |||||||||
Curves that $X_{188}$ minimally covers | $X_{98}$, $X_{100}$, $X_{101}$ | |||||||||
Curves that minimally cover $X_{188}$ | $X_{449}$, $X_{450}$, $X_{455}$, $X_{462}$, $X_{188a}$, $X_{188b}$, $X_{188c}$, $X_{188d}$, $X_{188e}$, $X_{188f}$, $X_{188g}$, $X_{188h}$ | |||||||||
Curves that minimally cover $X_{188}$ and have infinitely many rational points. | $X_{188a}$, $X_{188b}$, $X_{188c}$, $X_{188d}$, $X_{188e}$, $X_{188f}$, $X_{188g}$, $X_{188h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{188}) = \mathbb{Q}(f_{188}), f_{98} = \frac{f_{188}^{2} + 2}{f_{188}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 756x - 7808$, with conductor $126$ | |||||||||
Generic density of odd order reductions | $193/1792$ |