Curve name | $X_{188d}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{188}$ | |||||||||
Curves that $X_{188d}$ minimally covers | ||||||||||
Curves that minimally cover $X_{188d}$ | ||||||||||
Curves that minimally cover $X_{188d}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 432t^{14} - 1296t^{12} - 1728t^{10} - 99360t^{8} - 6912t^{6} - 20736t^{4} + 27648t^{2} - 6912\] \[B(t) = -54t^{24} + 1296t^{22} - 9072t^{20} + 12096t^{18} + 484704t^{16} - 3608064t^{14} - 3580416t^{12} - 14432256t^{10} + 7755264t^{8} + 774144t^{6} - 2322432t^{4} + 1327104t^{2} - 221184\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 1344x - 19404$, with conductor $336$ | |||||||||
Generic density of odd order reductions | $53/896$ |