Curve name | $X_{189e}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{189}$ | |||||||||
Curves that $X_{189e}$ minimally covers | ||||||||||
Curves that minimally cover $X_{189e}$ | ||||||||||
Curves that minimally cover $X_{189e}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 864t^{15} - 12096t^{14} - 96768t^{13} - 580608t^{12} - 3870720t^{11} - 27095040t^{10} - 142884864t^{9} - 500539392t^{8} - 1143078912t^{7} - 1734082560t^{6} - 1981808640t^{5} - 2378170368t^{4} - 3170893824t^{3} - 3170893824t^{2} - 1811939328t - 452984832\] \[B(t) = -54t^{24} - 2592t^{23} - 57024t^{22} - 760320t^{21} - 6386688t^{20} - 25546752t^{19} + 127733760t^{18} + 2934226944t^{17} + 24999321600t^{16} + 138195763200t^{15} + 563838713856t^{14} + 1862107398144t^{13} + 5461864611840t^{12} + 14896859185152t^{11} + 36085677686784t^{10} + 70756230758400t^{9} + 102397221273600t^{8} + 96148748500992t^{7} + 33484638781440t^{6} - 53575422050304t^{5} - 107150844100608t^{4} - 102048422952960t^{3} - 61229053771776t^{2} - 22265110462464t - 3710851743744\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 120800x + 15840000$, with conductor $1680$ | |||||||||
Generic density of odd order reductions | $19/336$ |