| Curve name | $X_{189}$ | 
| Index | $48$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 4 \\ 4 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{58}$ | 
| Curves that $X_{189}$ minimally covers | $X_{58}$, $X_{98}$, $X_{101}$ | 
| Curves that minimally cover $X_{189}$ | $X_{449}$, $X_{450}$, $X_{458}$, $X_{465}$, $X_{500}$, $X_{501}$, $X_{502}$, $X_{503}$, $X_{189a}$, $X_{189b}$, $X_{189c}$, $X_{189d}$, $X_{189e}$, $X_{189f}$, $X_{189g}$, $X_{189h}$, $X_{189i}$, $X_{189j}$, $X_{189k}$, $X_{189l}$, $X_{189m}$, $X_{189n}$ | 
| Curves that minimally cover $X_{189}$ and have infinitely many rational 
points. | $X_{189a}$, $X_{189b}$, $X_{189c}$, $X_{189d}$, $X_{189e}$, $X_{189f}$, $X_{189g}$, $X_{189h}$, $X_{189i}$, $X_{189j}$, $X_{189k}$, $X_{189l}$, $X_{189m}$, $X_{189n}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{189}) = \mathbb{Q}(f_{189}), f_{58} = 
\frac{f_{189}^{2} - 8}{f_{189}^{2} + 8f_{189} + 8}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 913553x + 328508948$, with conductor $25410$ | 
| Generic density of odd order reductions | $17/168$ |