Curve name | $X_{190a}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{190}$ | |||||||||
Curves that $X_{190a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{190a}$ | ||||||||||
Curves that minimally cover $X_{190a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -3159t^{24} - 160704t^{23} - 4068576t^{22} - 68470272t^{21} - 863657856t^{20} - 8705470464t^{19} - 72648382464t^{18} - 510826217472t^{17} - 3046704648192t^{16} - 15428677533696t^{15} - 66259485720576t^{14} - 240950446129152t^{13} - 741147367440384t^{12} - 1927603569033216t^{11} - 4240607086116864t^{10} - 7899482897252352t^{9} - 12479302238994432t^{8} - 16738753494122496t^{7} - 19044337572642816t^{6} - 18256694794518528t^{5} - 14489774400208896t^{4} - 9189924343382016t^{3} - 4368600215322624t^{2} - 1380436848672768t - 217084827009024\] \[B(t) = 51030t^{36} + 3312576t^{35} + 97689888t^{34} + 1600086528t^{33} + 11347019136t^{32} - 137995591680t^{31} - 5669491802112t^{30} - 100619809652736t^{29} - 1262385912840192t^{28} - 12491370505175040t^{27} - 102183265651654656t^{26} - 709551419585200128t^{25} - 4255210213459623936t^{24} - 22314137912271175680t^{23} - 103293962741474131968t^{22} - 425241710393699598336t^{21} - 1565939322271958040576t^{20} - 5179933655438123335680t^{19} - 15431571361347888218112t^{18} - 41439469243504986685440t^{17} - 100220116625405314596864t^{16} - 217723755721574194348032t^{15} - 423092071389078044540928t^{14} - 731189671109301884682240t^{13} - 1115477826197159657078784t^{12} - 1488037178685941618835456t^{11} - 1714350719423190921117696t^{10} - 1676563368810806111109120t^{9} - 1355476552644932778590208t^{8} - 864317583576492473843712t^{7} - 389604510000178299666432t^{6} - 75863878816994521251840t^{5} + 49904717922515124486144t^{4} + 56298039775479302455296t^{3} + 27497258949666593046528t^{2} + 7459258019618224078848t + 919274755938865643520\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 39x + 70$, with conductor $144$ | |||||||||
Generic density of odd order reductions | $299/2688$ |