| Curve name | $X_{190}$ | 
| Index | $48$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 2 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{99}$ | 
| Curves that $X_{190}$ minimally covers | $X_{99}$, $X_{100}$, $X_{101}$ | 
| Curves that minimally cover $X_{190}$ | $X_{446}$, $X_{449}$, $X_{462}$, $X_{463}$, $X_{190a}$, $X_{190b}$, $X_{190c}$, $X_{190d}$, $X_{190e}$, $X_{190f}$, $X_{190g}$, $X_{190h}$ | 
| Curves that minimally cover $X_{190}$ and have infinitely many rational 
points. | $X_{190a}$, $X_{190b}$, $X_{190c}$, $X_{190d}$, $X_{190e}$, $X_{190f}$, $X_{190g}$, $X_{190h}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{190}) = \mathbb{Q}(f_{190}), f_{99} = 
\frac{f_{190}^{2} - 8}{f_{190}^{2} + 8f_{190} + 8}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 108x + 288$, with conductor $600$ | 
| Generic density of odd order reductions | $635/5376$ |