Curve name | $X_{190}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{99}$ | |||||||||
Curves that $X_{190}$ minimally covers | $X_{99}$, $X_{100}$, $X_{101}$ | |||||||||
Curves that minimally cover $X_{190}$ | $X_{446}$, $X_{449}$, $X_{462}$, $X_{463}$, $X_{190a}$, $X_{190b}$, $X_{190c}$, $X_{190d}$, $X_{190e}$, $X_{190f}$, $X_{190g}$, $X_{190h}$ | |||||||||
Curves that minimally cover $X_{190}$ and have infinitely many rational points. | $X_{190a}$, $X_{190b}$, $X_{190c}$, $X_{190d}$, $X_{190e}$, $X_{190f}$, $X_{190g}$, $X_{190h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{190}) = \mathbb{Q}(f_{190}), f_{99} = \frac{f_{190}^{2} - 8}{f_{190}^{2} + 8f_{190} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 108x + 288$, with conductor $600$ | |||||||||
Generic density of odd order reductions | $635/5376$ |