Curve name | $X_{190c}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{190}$ | |||||||||
Curves that $X_{190c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{190c}$ | ||||||||||
Curves that minimally cover $X_{190c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -351t^{16} - 10368t^{15} - 157248t^{14} - 1658880t^{13} - 13706496t^{12} - 91570176t^{11} - 488927232t^{10} - 2043740160t^{9} - 6594600960t^{8} - 16349921280t^{7} - 31291342848t^{6} - 46883930112t^{5} - 56141807616t^{4} - 54358179840t^{3} - 41221619712t^{2} - 21743271936t - 5888802816\] \[B(t) = 1890t^{24} + 62208t^{23} + 710208t^{22} - 2239488t^{21} - 190003968t^{20} - 3218890752t^{19} - 34154459136t^{18} - 266174595072t^{17} - 1624896184320t^{16} - 8064035979264t^{15} - 33396264271872t^{14} - 117705164193792t^{13} - 357696245071872t^{12} - 941641313550336t^{11} - 2137360913399808t^{10} - 4128786421383168t^{9} - 6655574770974720t^{8} - 8722009131319296t^{7} - 8953386535747584t^{6} - 6750503178338304t^{5} - 3187737611993088t^{4} - 300578991243264t^{3} + 762580033339392t^{2} + 534362651099136t + 129879811031040\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 4x + 4$, with conductor $24$ | |||||||||
Generic density of odd order reductions | $215/2688$ |