Curve name | $X_{192g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{192}$ | |||||||||
Curves that $X_{192g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{192g}$ | ||||||||||
Curves that minimally cover $X_{192g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 25056t^{14} - 316224t^{12} + 2059776t^{10} - 4907520t^{8} + 32956416t^{6} - 80953344t^{4} - 102629376t^{2} - 1769472\] \[B(t) = -54t^{24} + 111456t^{22} + 9979200t^{20} + 8805888t^{18} - 75852288t^{16} - 3849928704t^{14} + 25856409600t^{12} - 61598859264t^{10} - 19418185728t^{8} + 36068917248t^{6} + 653996851200t^{4} + 116870086656t^{2} - 905969664\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 1920800x + 1025280000$, with conductor $1680$ | |||||||||
Generic density of odd order reductions | $19/336$ |