Curve name | $X_{192}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{85}$ | |||||||||
Curves that $X_{192}$ minimally covers | $X_{85}$, $X_{96}$, $X_{101}$ | |||||||||
Curves that minimally cover $X_{192}$ | $X_{451}$, $X_{458}$, $X_{482}$, $X_{483}$, $X_{504}$, $X_{505}$, $X_{506}$, $X_{519}$, $X_{192a}$, $X_{192b}$, $X_{192c}$, $X_{192d}$, $X_{192e}$, $X_{192f}$, $X_{192g}$, $X_{192h}$, $X_{192i}$, $X_{192j}$, $X_{192k}$, $X_{192l}$, $X_{192m}$, $X_{192n}$ | |||||||||
Curves that minimally cover $X_{192}$ and have infinitely many rational points. | $X_{192a}$, $X_{192b}$, $X_{192c}$, $X_{192d}$, $X_{192e}$, $X_{192f}$, $X_{192g}$, $X_{192h}$, $X_{192i}$, $X_{192j}$, $X_{192k}$, $X_{192l}$, $X_{192m}$, $X_{192n}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{192}) = \mathbb{Q}(f_{192}), f_{85} = \frac{8f_{192}}{f_{192}^{2} + 4}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 14526053x + 21308093948$, with conductor $25410$ | |||||||||
Generic density of odd order reductions | $17/168$ |