Curve name | $X_{193c}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{193}$ | |||||||||
Curves that $X_{193c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{193c}$ | ||||||||||
Curves that minimally cover $X_{193c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{24} + 9059696640t^{22} - 16533946368t^{20} + 12796821504t^{18} - 4862509056t^{16} + 4600627200t^{14} - 3791978496t^{12} + 287539200t^{10} - 18994176t^{8} + 3124224t^{6} - 252288t^{4} + 8640t^{2} - 108\] \[B(t) = 29686813949952t^{36} - 222651104624640t^{34} + 684652146720768t^{32} - 1098412116148224t^{30} + 897562265518080t^{28} - 82798379532288t^{26} - 629714146295808t^{24} + 639078248742912t^{22} - 231497898393600t^{20} + 25209058885632t^{18} - 14468618649600t^{16} + 2496399409152t^{14} - 153738805248t^{12} - 1263403008t^{10} + 855982080t^{8} - 65470464t^{6} + 2550528t^{4} - 51840t^{2} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 3355585x - 1388690017$, with conductor $47040$ | |||||||||
Generic density of odd order reductions | $271/2688$ |