Curve name | $X_{193d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{193}$ | ||||||||||||
Curves that $X_{193d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{193d}$ | |||||||||||||
Curves that minimally cover $X_{193d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7247757312t^{30} + 39862665216t^{28} - 84708163584t^{26} + 86520102912t^{24} - 49177165824t^{22} + 31326732288t^{20} - 25584795648t^{18} + 9884270592t^{16} - 1599049728t^{14} + 122370048t^{12} - 12006144t^{10} + 1320192t^{8} - 80784t^{6} + 2376t^{4} - 27t^{2}\] \[B(t) = 237494511599616t^{45} - 1959329720696832t^{43} + 6857654022438912t^{41} - 13232897318191104t^{39} + 14825780429193216t^{37} - 7780960321929216t^{35} - 3057277980377088t^{33} + 8654518015229952t^{31} - 6620674101608448t^{29} + 2627991502848000t^{27} - 694134931193856t^{25} + 173533732798464t^{23} - 41062367232000t^{21} + 6465502052352t^{19} - 528229859328t^{17} + 11662589952t^{15} + 1855125504t^{13} - 220921344t^{11} + 12324096t^{9} - 399168t^{7} + 7128t^{5} - 54t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 471879x + 73290685$, with conductor $4410$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |