Curve name | X193f | ||||||||||||
Index | 96 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [3607],[71401],[7007],[3609],[1087] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X193 | ||||||||||||
Curves that X193f minimally covers | |||||||||||||
Curves that minimally cover X193f | |||||||||||||
Curves that minimally cover X193f and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−452984832t26−905969664t25+452984832t24+1585446912t23+396361728t22−169869312t21−84934656t20−382205952t19−536150016t18−828112896t17−449445888t16−192872448t15−162349056t14+48218112t13−28090368t12+12939264t11−2094336t10+373248t9−20736t8+10368t7+6048t6−6048t5+432t4+216t3−27t2 B(t)=3710851743744t39+11132555231232t38−26903675142144t36−18786186952704t35+11132555231232t34+12987981103104t33+8349416423424t32−521838526464t31−24526410743808t30−18090402250752t29+8479876055040t28+12295820279808t27+13089449705472t26+13241652609024t25+5120540540928t24+3302599163904t23+1566534795264t22+391633698816t20−206412447744t19+80008445952t18−51725205504t17+12782665728t16−3001909248t15+517570560t14+276037632t13−93560832t12+497664t11+1990656t10−774144t9+165888t8+69984t7−25056t6+648t4−54t3 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy=x3+x2−26750x+976500, with conductor 1050 | ||||||||||||
Generic density of odd order reductions | 1091/10752 |