Curve name | $X_{193k}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 0 & 9 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{193}$ | ||||||||||||
Curves that $X_{193k}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{193k}$ | |||||||||||||
Curves that minimally cover $X_{193k}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{26} + 3623878656t^{25} + 1811939328t^{24} - 6341787648t^{23} + 1585446912t^{22} + 679477248t^{21} - 339738624t^{20} + 1528823808t^{19} - 2144600064t^{18} + 3312451584t^{17} - 1797783552t^{16} + 771489792t^{15} - 649396224t^{14} - 192872448t^{13} - 112361472t^{12} - 51757056t^{11} - 8377344t^{10} - 1492992t^{9} - 82944t^{8} - 41472t^{7} + 24192t^{6} + 24192t^{5} + 1728t^{4} - 864t^{3} - 108t^{2}\] \[B(t) = 29686813949952t^{39} - 89060441849856t^{38} + 215229401137152t^{36} - 150289495621632t^{35} - 89060441849856t^{34} + 103903848824832t^{33} - 66795331387392t^{32} - 4174708211712t^{31} + 196211285950464t^{30} - 144723218006016t^{29} - 67839008440320t^{28} + 98366562238464t^{27} - 104715597643776t^{26} + 105933220872192t^{25} - 40964324327424t^{24} + 26420793311232t^{23} - 12532278362112t^{22} - 3133069590528t^{20} - 1651299581952t^{19} - 640067567616t^{18} - 413801644032t^{17} - 102261325824t^{16} - 24015273984t^{15} - 4140564480t^{14} + 2208301056t^{13} + 748486656t^{12} + 3981312t^{11} - 15925248t^{10} - 6193152t^{9} - 1327104t^{8} + 559872t^{7} + 200448t^{6} - 5184t^{4} - 432t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 3852075x + 1706652250$, with conductor $25200$ | ||||||||||||
Generic density of odd order reductions | $139/1344$ |