Curve name | $X_{193m}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{193}$ | |||||||||
Curves that $X_{193m}$ minimally covers | ||||||||||
Curves that minimally cover $X_{193m}$ | ||||||||||
Curves that minimally cover $X_{193m}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{16} + 14155776t^{14} - 5308416t^{12} - 884736t^{10} - 6359040t^{8} - 55296t^{6} - 20736t^{4} + 3456t^{2} - 108\] \[B(t) = -7247757312t^{24} + 21743271936t^{22} - 19025362944t^{20} + 3170893824t^{18} + 15882780672t^{16} - 14778630144t^{14} - 1833172992t^{12} - 923664384t^{10} + 62042112t^{8} + 774144t^{6} - 290304t^{4} + 20736t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 68481x - 4068225$, with conductor $6720$ | |||||||||
Generic density of odd order reductions | $81/896$ |