Curve name | $X_{194}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{96}$ | |||||||||
Curves that $X_{194}$ minimally covers | $X_{96}$, $X_{98}$, $X_{99}$ | |||||||||
Curves that minimally cover $X_{194}$ | $X_{451}$, $X_{460}$, $X_{464}$, $X_{465}$, $X_{468}$, $X_{469}$, $X_{194a}$, $X_{194b}$, $X_{194c}$, $X_{194d}$, $X_{194e}$, $X_{194f}$, $X_{194g}$, $X_{194h}$, $X_{194i}$, $X_{194j}$, $X_{194k}$, $X_{194l}$ | |||||||||
Curves that minimally cover $X_{194}$ and have infinitely many rational points. | $X_{194a}$, $X_{194b}$, $X_{194c}$, $X_{194d}$, $X_{194e}$, $X_{194f}$, $X_{194g}$, $X_{194h}$, $X_{194i}$, $X_{194j}$, $X_{194k}$, $X_{194l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{194}) = \mathbb{Q}(f_{194}), f_{96} = \frac{f_{194}^{2} + \frac{1}{4}}{f_{194}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 64980x + 5986876$, with conductor $1530$ | |||||||||
Generic density of odd order reductions | $25/224$ |