Curve name | $X_{195j}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{195}$ | |||||||||
Curves that $X_{195j}$ minimally covers | ||||||||||
Curves that minimally cover $X_{195j}$ | ||||||||||
Curves that minimally cover $X_{195j}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} + 6856704t^{20} - 7050240t^{16} + 2681856t^{12} - 440640t^{8} + 26784t^{4} - 108\] \[B(t) = 113246208t^{36} + 3482320896t^{32} - 10022289408t^{28} + 9314500608t^{24} - 4238770176t^{20} + 1059692544t^{16} - 145539072t^{12} + 9787392t^{8} - 212544t^{4} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 20148x + 586096$, with conductor $2880$ | |||||||||
Generic density of odd order reductions | $73/672$ |