Curve name | $X_{195}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{84}$ | |||||||||
Curves that $X_{195}$ minimally covers | $X_{84}$, $X_{92}$, $X_{102}$ | |||||||||
Curves that minimally cover $X_{195}$ | $X_{445}$, $X_{453}$, $X_{479}$, $X_{487}$, $X_{195a}$, $X_{195b}$, $X_{195c}$, $X_{195d}$, $X_{195e}$, $X_{195f}$, $X_{195g}$, $X_{195h}$, $X_{195i}$, $X_{195j}$, $X_{195k}$, $X_{195l}$ | |||||||||
Curves that minimally cover $X_{195}$ and have infinitely many rational points. | $X_{195a}$, $X_{195b}$, $X_{195c}$, $X_{195d}$, $X_{195e}$, $X_{195f}$, $X_{195g}$, $X_{195h}$, $X_{195i}$, $X_{195j}$, $X_{195k}$, $X_{195l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{195}) = \mathbb{Q}(f_{195}), f_{84} = \frac{f_{195}^{2} - \frac{1}{2}}{f_{195}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + 1714x + 14685$, with conductor $735$ | |||||||||
Generic density of odd order reductions | $25/224$ |