Curve name | $X_{197e}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{197}$ | |||||||||
Curves that $X_{197e}$ minimally covers | ||||||||||
Curves that minimally cover $X_{197e}$ | ||||||||||
Curves that minimally cover $X_{197e}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 5076t^{16} - 203904t^{15} - 1095552t^{14} + 2336256t^{13} - 8232192t^{12} - 55019520t^{11} + 45398016t^{10} - 270508032t^{9} + 370538496t^{8} + 1082032128t^{7} + 726368256t^{6} + 3521249280t^{5} - 2107441152t^{4} - 2392326144t^{3} - 4487380992t^{2} + 3340763136t + 332660736\] \[B(t) = 1019088t^{24} + 8066304t^{23} - 40414464t^{22} + 291271680t^{21} + 4044225024t^{20} + 875556864t^{19} - 4345270272t^{18} + 82544541696t^{17} - 241048866816t^{16} + 126959616000t^{15} + 1119470616576t^{14} - 823144218624t^{13} + 14415230140416t^{12} + 3292576874496t^{11} + 17911529865216t^{10} - 8125415424000t^{9} - 61708509904896t^{8} - 84525610696704t^{7} - 17798227034112t^{6} - 14345123659776t^{5} + 265042331172864t^{4} - 76355123281920t^{3} - 42377637003264t^{2} - 33832531132416t + 17097459499008\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 63x + 1377$, with conductor $192$ | |||||||||
Generic density of odd order reductions | $109/896$ |