Curve name | $X_{197}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{75}$ | |||||||||
Curves that $X_{197}$ minimally covers | $X_{75}$, $X_{86}$, $X_{102}$ | |||||||||
Curves that minimally cover $X_{197}$ | $X_{467}$, $X_{481}$, $X_{197a}$, $X_{197b}$, $X_{197c}$, $X_{197d}$, $X_{197e}$, $X_{197f}$, $X_{197g}$, $X_{197h}$ | |||||||||
Curves that minimally cover $X_{197}$ and have infinitely many rational points. | $X_{197a}$, $X_{197b}$, $X_{197c}$, $X_{197d}$, $X_{197e}$, $X_{197f}$, $X_{197g}$, $X_{197h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{197}) = \mathbb{Q}(f_{197}), f_{75} = \frac{\frac{1}{4}f_{197}^{2} + f_{197} - 1}{f_{197}^{2} + 4}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 392x - 21712$, with conductor $600$ | |||||||||
Generic density of odd order reductions | $635/5376$ |