Curve name | $X_{197g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{197}$ | |||||||||
Curves that $X_{197g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{197g}$ | ||||||||||
Curves that minimally cover $X_{197g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 1269t^{16} - 50976t^{15} - 273888t^{14} + 584064t^{13} - 2058048t^{12} - 13754880t^{11} + 11349504t^{10} - 67627008t^{9} + 92634624t^{8} + 270508032t^{7} + 181592064t^{6} + 880312320t^{5} - 526860288t^{4} - 598081536t^{3} - 1121845248t^{2} + 835190784t + 83165184\] \[B(t) = -127386t^{24} - 1008288t^{23} + 5051808t^{22} - 36408960t^{21} - 505528128t^{20} - 109444608t^{19} + 543158784t^{18} - 10318067712t^{17} + 30131108352t^{16} - 15869952000t^{15} - 139933827072t^{14} + 102893027328t^{13} - 1801903767552t^{12} - 411572109312t^{11} - 2238941233152t^{10} + 1015676928000t^{9} + 7713563738112t^{8} + 10565701337088t^{7} + 2224778379264t^{6} + 1793140457472t^{5} - 33130291396608t^{4} + 9544390410240t^{3} + 5297204625408t^{2} + 4229066391552t - 2137182437376\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 16x - 180$, with conductor $24$ | |||||||||
Generic density of odd order reductions | $215/2688$ |