Curve name | $X_{199f}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{199}$ | |||||||||
Curves that $X_{199f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{199f}$ | ||||||||||
Curves that minimally cover $X_{199f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 12528t^{14} - 79056t^{12} - 257472t^{10} - 306720t^{8} - 1029888t^{6} - 1264896t^{4} + 801792t^{2} - 6912\] \[B(t) = 54t^{24} + 55728t^{22} - 2494800t^{20} + 1100736t^{18} + 4740768t^{16} - 120310272t^{14} - 404006400t^{12} - 481241088t^{10} + 75852288t^{8} + 70447104t^{6} - 638668800t^{4} + 57065472t^{2} + 221184\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 1644x - 30942$, with conductor $102$ | |||||||||
Generic density of odd order reductions | $53/896$ |