Curve name | $X_{199}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{75}$ | |||||||||
Curves that $X_{199}$ minimally covers | $X_{75}$, $X_{84}$, $X_{85}$ | |||||||||
Curves that minimally cover $X_{199}$ | $X_{466}$, $X_{477}$, $X_{199a}$, $X_{199b}$, $X_{199c}$, $X_{199d}$, $X_{199e}$, $X_{199f}$, $X_{199g}$, $X_{199h}$ | |||||||||
Curves that minimally cover $X_{199}$ and have infinitely many rational points. | $X_{199a}$, $X_{199b}$, $X_{199c}$, $X_{199d}$, $X_{199e}$, $X_{199f}$, $X_{199g}$, $X_{199h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{199}) = \mathbb{Q}(f_{199}), f_{75} = \frac{f_{199}}{f_{199}^{2} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 14796x + 835434$, with conductor $306$ | |||||||||
Generic density of odd order reductions | $635/5376$ |