Curve name | $X_{200a}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{200}$ | |||||||||
Curves that $X_{200a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{200a}$ | ||||||||||
Curves that minimally cover $X_{200a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{16} + 27648t^{14} - 435456t^{12} + 822528t^{10} - 721440t^{8} + 205632t^{6} - 27216t^{4} + 432t^{2} - 27\] \[B(t) = -221184t^{24} + 1327104t^{22} + 25546752t^{20} - 110702592t^{18} + 314316288t^{16} - 432470016t^{14} + 285562368t^{12} - 108117504t^{10} + 19644768t^{8} - 1729728t^{6} + 99792t^{4} + 1296t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 1664x - 9804$, with conductor $336$ | |||||||||
Generic density of odd order reductions | $53/896$ |