| Curve name | $X_{200}$ | 
| Index | $48$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{62}$ | 
| Curves that $X_{200}$ minimally covers | $X_{62}$, $X_{98}$, $X_{101}$ | 
| Curves that minimally cover $X_{200}$ | $X_{451}$, $X_{455}$, $X_{456}$, $X_{462}$, $X_{200a}$, $X_{200b}$, $X_{200c}$, $X_{200d}$, $X_{200e}$, $X_{200f}$, $X_{200g}$, $X_{200h}$ | 
| Curves that minimally cover $X_{200}$ and have infinitely many rational 
points. | $X_{200a}$, $X_{200b}$, $X_{200c}$, $X_{200d}$, $X_{200e}$, $X_{200f}$, $X_{200g}$, $X_{200h}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{200}) = \mathbb{Q}(f_{200}), f_{62} = 
\frac{f_{200}^{2} - \frac{1}{2}}{f_{200}}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 936x - 3668$, with conductor $126$ | 
| Generic density of odd order reductions | $193/1792$ |